Форум Статьи Контакты
Строительство — возведение зданий и сооружений, а также их капитальный и текущий ремонт, реконструкция, реставрация и реновация.

Диэдр

Дата: 6-07-2021, 04:01 » Раздел: Статьи  » 

Диэдр — вид многогранника, состоящего из двух многоугольных граней, имеющих общий набор рёбер. В трёхмерном евклидовом пространстве он является вырожденным, если его грани плоские, в то время как в трёхмерном сферическом пространстве диэдр с плоскими гранями может рассматриваться как линза, примером которой является фундаментальная область линзового пространства L(p,q) .

Обычно правильный диэдр подразумевается состоящим из двух правильных многоугольников, и это даёт ему символ Шлефли {n,2}. Каждый многоугольник заполняет полусферу с правильным n-угольником на большом круге (экваторе) между ними .

Двойственным многогранником n-угольного диэдра является n-угольный осоэдр, в котором n двуугольных граней имеют две общие вершины.

Как многогранник

Диэдр можно считать вырожденной призмой, состоящей из двух (плоских) n-сторонних многоугольников, соединённых внутренними сторонами, так что результирующий объект имеет нулевую высоту.

Как мозаика на сфере

Как сферическая мозаика диэдр может существовать в невырожденном виде с n-сторонними гранями, покрывающими сферу. Каждая грань этого диэдра является полусферой с вершинами на большом круге. (Грань правильная, если вершины находятся на равном расстоянии друг от друга.)

Правильный многогранник {2,2} самодвойственен и является одновременно осоэдром и диэдром.

Бесконечноугольный диэдр

В пределе диэдр становится бесконечноугольным диэдром в виде 2-мерной мозаики:

Дитоп

Правильный дитоп — это n-мерный аналог диэдра с символом Шлефли {p, … q, r,2}. Дитоп имеет две (n-1)-мерной грани {p, … q, r}, которые имеют общую (n-12)-мерную грань.


(голосов:0)

Пожожие новости
Комментарии

Ваше Имя:   Ваш E-Mail: