Форум Статьи Контакты
Строительство — возведение зданий и сооружений, а также их капитальный и текущий ремонт, реконструкция, реставрация и реновация.

Подшипник


Подшипник (от «под шип») — сборочный узел, являющийся частью опоры или упора и поддерживающий вал, ось или иную подвижную конструкцию с заданной жёсткостью. Фиксирует положение в пространстве, обеспечивает вращение, качение с наименьшим сопротивлением, воспринимает и передаёт нагрузку от подвижного узла на другие части конструкции.

Опора с упорным подшипником называется подпятником.

Основные параметры подшипников:

  • Максимальная динамическая и статическая нагрузка (радиальная и осевая).
  • Максимальная скорость (оборотов в минуту для радиальных подшипников).
  • Посадочные размеры.
  • Класс точности подшипников.
  • Требования к смазке.
  • Ресурс подшипника до появления признаков усталости, в оборотах.
  • Шумы подшипника
  • Вибрации подшипника

Нагружающие подшипник силы подразделяют на:

  • радиальную, действующую в направлении, перпендикулярном оси подшипника;
  • осевую, действующую в направлении, параллельном оси подшипника.

Основные типы подшипников

По принципу работы все подшипники можно разделить на несколько типов:

  • подшипники качения;
  • подшипники скольжения;

К подшипникам скольжения также относят:

  • газостатические подшипники;
  • газодинамические подшипники;
  • гидростатические подшипники;
  • гидродинамические подшипники;
  • магнитные подшипники.

Основные типы, которые применяются в машиностроении, — это подшипники качения и подшипники скольжения.

Подшипники качения

Подшипники качения состоят из двух колец, тел качения (различной формы) и сепаратора (некоторые типы подшипников могут быть без сепаратора), отделяющего тела качения друг от друга, удерживающего на равном расстоянии и направляющего их движение. По наружной поверхности внутреннего кольца и внутренней поверхности наружного кольца (на торцевых поверхностях колец упорных подшипников качения) выполняют желоба — дорожки качения, по которым при работе подшипника катятся тела качения.

Также существуют насыпные подшипники, состоящие из сепаратора и вставленных в него шариков (см. рис. ниже), которые можно вытаскивать.

Имеются подшипники качения, изготовленные без сепаратора. Такие подшипники имеют большее число тел качения и большую грузоподъёмность. Однако предельные частоты вращения бессепараторных подшипников значительно ниже вследствие повышенных моментов сопротивления вращению.

В подшипниках качения возникает преимущественно трение качения (имеются только небольшие потери на трение скольжения между сепаратором и телами качения), поэтому по сравнению с подшипниками скольжения снижаются потери энергии на трение и уменьшается износ. Закрытые подшипники качения (имеющие защитные крышки) практически не требуют обслуживания (замены смазки), открытые — чувствительны к попаданию инородных тел, что может привести к быстрому разрушению подшипника.

Классификация

Классификация подшипников качения осуществляется на основе следующих признаков:

  • По виду тел качения
    • Шариковые,
    • Роликовые (игольчатые, если ролики тонкие и длинные);
  • По типу воспринимаемой нагрузки
    • Радиальные (нагрузка вдоль оси вала не допускается).
    • Радиально-упорные, упорно-радиальные. Воспринимают нагрузки как вдоль, так и поперёк оси вала. Часто нагрузка вдоль оси только одного направления.
    • Упорные (нагрузка поперёк оси вала не допускается).
      • Шариковые винтовые передачи. Обеспечивают сопряжение винт-гайка через тела качения.
  • По числу рядов тел качения
    • Однорядные,
    • Двухрядные,
    • Многорядные;
    • Самоустанавливающиеся.
    • Несамоустанавливающиеся.
  • По материалу тел качений:
    • Полностью стальные;
    • Гибридные: стальные кольца, тела качения неметаллические, как правило, керамические, применяются в быстровращающихся механизмах, чаще всего - в газотурбинных двигателях;
  • Радиальный роликовый подшипник

  • Упорный шариковый подшипник

  • Упорный роликовый подшипник

  • Радиально-упорный шариковый подшипник

  • Радиально-упорный шариковый подшипник с четырёхточечным контактом

  • Радиально-упорный роликовый подшипник (конический)

  • Самоустанавливающийся двухрядный радиальный шариковый подшипник

  • Самоустанавливающийся радиальный роликовый подшипник

  • Самоустанавливающийся радиально-упорный роликовый подшипник

  • Самоустанавливающийся двухрядный радиальный роликовый подшипник с бочкообразными роликами (сферический)

  • Самоустанавливающийся подшипник

  • Сепаратор с роликами игольчатого подшипника

  • Шариковая винтовая передача

  • Шарики

Механическая теория

Подшипник представляет собой по существу планетарный механизм, в котором водилом является сепаратор, функции центральных колёс выполняют внутреннее и наружное кольца, а тела качения заменяют сателлиты.

Частота вращения сепаратора или частота вращения шариков вокруг оси подшипника:

n c = n 1 2 ( 1 − D ω d m ) , {displaystyle n_{c}={frac {n_{1}}{2}}left(1-{frac {D_{omega }}{d_{m}}} ight),} где n c {displaystyle n_{c}} — частота вращения внутреннего кольца радиального шарикоподшипника, D ω {displaystyle D_{omega }} — диаметр шарика,

d m = 0 , 5 ( D + d ) {displaystyle d_{m}=0,5(D+d)} — диаметр окружности, проходящей через оси всех тел качения (шариков или роликов).

Частота вращения шарика относительно сепаратора:

n s p = n 1 2 ( d m D ω − D ω d m ) . {displaystyle n_{sp}={frac {n_{1}}{2}}left({frac {d_{m}}{D_{omega }}}-{frac {D_{omega }}{d_{m}}} ight).}

Частота вращения сепаратора при вращении наружного кольца:

n c ∗ = n 3 2 ( 1 + D ω d m ) , {displaystyle n_{c*}={frac {n_{3}}{2}}left(1+{frac {D_{omega }}{d_{m}}} ight),} где n 3 {displaystyle n_{3}} — частота вращения внешнего кольца радиального шарикоподшипника.

Для радиально-упорного подшипника:

n c = n 1 2 ( 1 − D ω cos ⁡ α d m ) , {displaystyle n_{c}={frac {n_{1}}{2}}left(1-{frac {D_{omega }cos alpha }{d_{m}}} ight),} n s p = n 1 2 ( d m D ω − D ω cos 2 ⁡ α d m ) . {displaystyle n_{sp}={frac {n_{1}}{2}}left({frac {d_{m}}{D_{omega }}}-{frac {D_{omega }cos ^{2}alpha }{d_{m}}} ight).}

Из приведённых выше соотношений следует, что при вращении внутреннего кольца сепаратор вращается в ту же сторону. Частота вращения сепаратора зависит от диаметра D ω {displaystyle D_{omega }} шариков при неизменном d m {displaystyle d_{m}} : она возрастает при уменьшении D ω {displaystyle D_{omega }} и уменьшается при увеличении D ω . {displaystyle D_{omega }.}

В связи с этим разноразмерность шариков в комплекте подшипника является причиной повышенного износа и выхода из строя сепаратора и подшипника в целом.

При вращении тел качения вокруг оси подшипника на каждое из них действует нагружающая дополнительно дорожку качения наружного кольца центробежная сила:

F c = 0 , 5 m d m ω c 2 , {displaystyle F_{c}=0,5md_{m}omega _{c}^{2},} где m {displaystyle m} — масса тела качения, ω c {displaystyle omega _{c}} — угловая скорость сепаратора.

Центробежные силы вызывают перегрузку подшипника при работе на повышенной частоте вращения, повышенное тепловыделение (перегрев подшипника) и ускоренное изнашивание сепаратора. Всё это сокращает срок службы подшипника.

В упорном подшипнике, кроме центробежных сил, на шарики действует обусловленный изменением направления оси вращения шариков в пространстве гироскопический момент M r : {displaystyle M_{r}:}

M r = J ω c ω s p . {displaystyle M_{r}=Jomega _{c}omega _{sp}.}

Гироскопический момент будет действовать на шарики и во вращающемся радиально-упорном шарикоподшипнике при действии осевой нагрузки:

M r = J ω c ω s p sin ⁡ α , {displaystyle M_{r}=Jomega _{c}omega _{sp}sin alpha ,} где J = ρ ⋅ π ⋅ D ω 5 / 60 {displaystyle J= ho cdot pi cdot D_{omega }^{5}/60} — полярный момент инерции массы шарика; ρ {displaystyle ho } — плотность материала шарика; ω s p {displaystyle omega _{sp}} и ω s {displaystyle omega _{s}} — соответственно, угловая скорость шарика при вращении вокруг своей оси и вокруг оси вала (угловая скорость сепаратора).

Под действием гироскопического момента каждый шарик получает дополнительное вращение вокруг оси, перпендикулярной плоскости, образованной векторами угловых скоростей шарика и сепаратора. Такое вращение сопровождается изнашиванием поверхностей качения, и для предотвращения вращения подшипник следует нагружать такой осевой силой, чтобы соблюдать условие:

T f = M r , {displaystyle T_{f}=M_{r},} где T f {displaystyle T_{f}} — момент сил трения от осевой нагрузки на площадках контакта шариков с кольцами.

Условное обозначение подшипников качения в СССР и России

Советская и российская маркировка подшипников состоит из условного обозначения и стандартизована в соответствии ГОСТ 3189-89 и условного обозначения завода-изготовителя.

Основное условное обозначение подшипника состоит из семи цифр основного условного обозначения (при нулевых значениях этих признаков оно может сокращаться до 2 знаков) и дополнительного обозначения, которое располагается слева и справа от основного. При этом дополнительное обозначение, расположенное слева от основного, всегда отделено знаком тире (—), а дополнительное обозначение, расположенное справа, всегда начинается с какой-либо буквы. Чтение знаков основного и дополнительного обозначения производится справа налево.

Подшипники скольжения

Определение

Подшипник скольжения — опора или направляющая механизма или машины, в которой трение происходит при скольжении сопряжённых поверхностей. Радиальный подшипник скольжения представляет собой корпус, имеющий цилиндрическое отверстие, в которое вставляется рабочий элемент — вкладыш, или втулка из антифрикционного материала и смазывающее устройство. Между валом и отверстием втулки подшипника имеется зазор, заполненный смазочным материалом, который позволяет свободно вращаться валу. Расчёт зазора подшипника, работающего в режиме разделения поверхностей трения смазочным слоем, производится на основе гидродинамической теории смазки.

При расчёте определяются: минимальная толщина смазочного слоя (измеряемая в мкм), давления в смазочном слое, температура и расход смазочных материалов. В зависимости от конструкции, окружной скорости цапфы, условий эксплуатации трение скольжения бывает сухим, граничным, жидкостным и газодинамическим. Однако даже подшипники с жидкостным трением при пуске проходят этап с граничным трением.

Смазка является одним из основных условий надёжной работы подшипника и обеспечивает низкое трение, разделение подвижных частей, теплоотвод, защиту от вредного воздействия окружающей среды.

Смазка может быть:

  • жидкой (минеральные и синтетические масла, вода для неметаллических подшипников),
  • пластичной (на основе литиевого мыла и сульфонат кальция и др.),
  • твёрдой (графит, дисульфид молибдена и др.) и
  • газообразной (различные инертные газы, азот и др.).

Наилучшие эксплуатационные свойства показывают пористые самосмазывающиеся подшипники, изготовленные методом порошковой металлургии. При работе пористый самосмазывающийся подшипник, пропитанный маслом, нагревается и выделяет смазку из пор на рабочую скользящую поверхность, а в состоянии покоя остывает и впитывает смазку обратно в поры.

Антифрикционные материалы подшипников изготавливают из твёрдых сплавов (карбид вольфрама или карбид хрома методом порошковой металлургии либо высокоскоростным газопламенным напылением), баббитов и бронз, полимерных материалов, керамики, твёрдых пород дерева (железное дерево).

PV-фактор

PV-фактор — основная характеристика (критерий) оценки работоспособности подшипника скольжения. Является произведением удельной нагрузки P (МПа) на окружную скорость V (м/с). Определяется для каждого антифрикционного материала экспериментально при испытаниях или в процессе эксплуатации. Многие данные по соблюдению оптимального PV-фактора даны в справочниках

Классификация

В основу классификации положен анализ режимов работы подшипников по диаграмме Герси-Штрибека.

Подшипники скольжения разделяют:

  • в зависимости от формы подшипникового отверстия:
    • одно- или многоповерхностные,
    • со смещением поверхностей (по направлению вращения) или без (для сохранения возможности обратного вращения),
    • со смещением или без смещения центра (для конечной установки валов после монтажа);
  • по направлению восприятия нагрузки:
    • радиальные
    • осевые (упорные, подпятники),
    • радиально-упорные;
  • по конструкции:
    • неразъёмные (втулочные; в основном, для I-1),
    • разъёмные (состоящие из корпуса и крышки; в основном, для всех, кроме I-1),
    • встроенные (рамовые, составляющие одно целое с картером, рамой или станиной машины);
  • по количеству масляных клапанов:
    • с одним клапаном,
    • с несколькими клапанами;
  • по возможности регулирования:
    • нерегулируемые,
    • регулируемые.

Ниже представлена таблица групп и классов подшипников скольжения (примеры обозначения: I-1, II-5).

Достоинства

  • Надёжность в высокоскоростных приводах
  • Способны воспринимать значительные ударные и вибрационные нагрузки
  • Сравнительно малые радиальные размеры
  • Допускают установку разъёмных подшипников на шейки коленчатых валов и не требуют демонтажа других деталей при ремонте
  • Простая конструкция в тихоходных машинах
  • Позволяют работать в воде
  • Допускают регулирование зазора и обеспечивают точную установку геометрической оси вала
  • Экономичны при больших диаметрах валов

Недостатки

  • В процессе работы требуют постоянного надзора за смазкой
  • Сравнительно большие осевые размеры
  • Большие потери на трение при пуске и несовершенной смазке
  • Большой расход смазочного материала
  • Высокие требования к температуре и чистоте смазки
  • Пониженный коэффициент полезного действия
  • Неравномерный износ подшипника и цапфы
  • Применение более дорогих материалов

(голосов:0)

Пожожие новости
Комментарии

Ваше Имя:   

Ваш E-Mail: