Форум Статьи Контакты
Строительство — возведение зданий и сооружений, а также их капитальный и текущий ремонт, реконструкция, реставрация и реновация.

Хорда (геометрия)


Хорда (от греч. χορδή — струна) в планиметрии — отрезок, соединяющий две точки данной кривой (например, окружности, эллипса, параболы, гиперболы).

Хорда находится на секущей прямой — прямой линии, пересекающей кривую в двух или более точках. Плоская фигура, заключённая между кривой и её хордой называется сегментом, а часть кривой, находящаяся между двумя крайними точками хорды называется дугой. В случае с замкнутыми кривыми (например, окружностью, эллипсом) хорда образует пару дуг с одними и теми же крайними точками по разные стороны хорды. Хорда, проходящая через центр окружности, является её диаметром. Диаметр — самая длинная хорда окружности.

Свойства хорд окружности

Хорда и расстояние до центра окружности

  • Если расстояния от центра окружности до хорд равны, то эти хорды равны.
  • Если хорды равны, то расстояния от центра окружности до этих хорд равны.
  • Если хорда больше, то расстояние от центра окружности до этой хорды меньше. Если хорда меньше, то расстояние от центра окружности до этой хорды больше.
  • Если расстояние от центра окружности до хорды меньше, то эта хорда больше. Если расстояние от центра окружности до хорды больше, то эта хорда меньше.
  • Наибольшая возможная хорда является диаметром.
  • Наименьшая возможная хорда является точкой.
  • Если хорда проходит через центр окружности, то эта хорда является диаметром.
  • Если расстояние от центра окружности до хорды равно радиусу, то эта хорда является точкой.
  • Серединный перпендикуляр к хорде проходит через центр окружности.

Хорда и диаметр

  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр перпендикулярен этой хорде.
  • Если диаметр перпендикулярен хорде, то этот диаметр делит эту хорду пополам.
  • Если диаметр делит хорду, не являющуюся диаметром, пополам, то этот диаметр делит дуги, стягиваемые этой хордой, пополам.
  • Если диаметр делит дугу пополам, то этот диаметр делит пополам хорду, стягивающую эту дугу.
  • Если диаметр перпендикулярен хорде, то этот диаметр делит дуги, стягиваемые этой хордой, пополам.
  • Если диаметр делит дугу пополам, то этот диаметр перпендикулярен хорде, стягивающей эту дугу.

Хорда и радиус

  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус перпендикулярен этой хорде.
  • Если радиус перпендикулярен хорде, то этот радиус делит эту хорду пополам.
  • Если радиус делит хорду, не являющуюся диаметром, пополам, то этот радиус делит дугу, стягиваемую этой хордой, пополам.
  • Если радиус делит дугу пополам, то этот радиус делит пополам хорду, стягивающую эту дугу.
  • Если радиус перпендикулярен хорде, то этот радиус делит дугу, стягиваемую этой хордой, пополам.
  • Если радиус делит дугу пополам, то этот радиус перпендикулярен хорде, стягивающей эту дугу.

Хорда и вписанный угол

  • Если вписанные углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то эти углы равны.
  • Если пара вписанных углов опирается на одну и ту же хорду и вершины этих углов лежат по разные стороны этой хорды, то сумма этих углов равна 180°.
  • Если вписанный и центральный углы опираются на одну и ту же хорду и вершины этих углов лежат по одну сторону этой хорды, то вписанный угол равен половине центрального угла.
  • Если вписанный угол опирается на диаметр, то этот угол является прямым.

Хорда и центральный угол

  • Если хорды стягивают равные центральные углы, то эти хорды равны.
  • Если хорды равны, то эти хорды стягивают равные центральные углы.
  • Большая хорда стягивает больший центральный угол, меньшая хорда стягивает меньший центральный угол.
  • Больший центральный угол стягивается большей хордой, меньший центральный угол стягивается меньшей хордой.

Хорда и дуга

  • Если хорды стягивают равные дуги, то эти хорды равны.
  • Если хорды равны, то эти хорды стягивают равные дуги.
  • Из дуг, меньших полуокружности, большая дуга стягивается большей хордой, меньшая дуга стягивается меньшей хордой.
  • Из дуг, меньших полуокружности, большая хорда стягивает большую дугу, меньшая хорда стягивает меньшую дугу.
  • Из дуг, больших полуокружности, меньшая дуга стягивается большей хордой, большая дуга стягивается меньшей хордой.
  • Из дуг, больших полуокружности, большая хорда стягивает меньшую дугу, меньшая хорда стягивает большую дугу.
  • Хорда, стягивающая полуокружность, является диаметром.
  • Если хорды параллельны, то дуги, заключённые между этими хордами (не путать с дугами, стягиваемыми хордами), равны.

Другие свойства

  • При пересечении двух хорд AB и CD в точке E получаются отрезки, произведение длин которых у одной хорды равно соответствующему произведению у другой (см. рис. 1): A E ⋅ E B = C E ⋅ E D {displaystyle AEcdot EB=CEcdot ED} .
  • Если хорда делится пополам какой-либо точкой, то её длина самая маленькая по сравнению с длинами проведённых через эту точку хорд.

Свойства хорд эллипса

Основные формулы

  • Длина хорды равна l = 2 r sin ⁡ α 2 {displaystyle l=2rsin {frac {alpha }{2}}} , где r {displaystyle r} — радиус окружности, α {displaystyle alpha } — центральный угол, опирающийся на данную хорду (рис. 2).
  • Формула, напрямую выводящаяся из теоремы Пифагора (рис. 3): ( l 2 ) 2 + d 2 = r 2 {displaystyle left({frac {l}{2}} ight)^{2}+d^{2}=r^{2}} , где l {displaystyle l} — длина хорды, r {displaystyle r} — радиус окружности, d {displaystyle d} — расстояние от центра окружности до хорды.
  • Если известны все четыре длины отрезков двух пересекающихся хорд, например, a ¯ = A E ; A ¯ = E B ; b ¯ = C E ; B ¯ = E D {displaystyle {overline {a}}=AE,;,{overline {A}}=EB,;,{overline {b}}=CE,;,{overline {B}}=ED} (см. Рис.1), то радиус окружности определяется формулой:
r = A ¯ ⋅ a ¯ + ( A ¯ − a ¯ ) 2 + ( B ¯ − b ¯ ) 2 − 2 ( A ¯ − a ¯ ) ( B ¯ − b ¯ ) cos ⁡ t 4 sin 2 ⁡ t {displaystyle r={sqrt {{overline {A}}cdot {overline {a}}+{frac {({overline {A}}-{overline {a}})^{2}+({overline {B}}-{overline {b}})^{2}-2,({overline {A}}-{overline {a}})({overline {B}}-{overline {b}})cos {t}}{4,sin ^{2}{t}}}}}} при ограничениях: A ¯ ⋅ a ¯ = B ¯ ⋅ b ¯ ; A ¯ ≥ a ¯ ; B ¯ ≥ b ¯ {displaystyle {overline {A}}cdot {overline {a}}={overline {B}}cdot {overline {b}},;quad {overline {A}}geq {overline {a}},;quad {overline {B}}geq {overline {b}}} . Здесь t {displaystyle t,} — угол между отрезками A ¯ {displaystyle {overline {A}}} и B ¯ {displaystyle {overline {B}},,} (или между отрезками a ¯ {displaystyle {overline {a}}} и b ¯ {displaystyle {overline {b}}} ) . В случае, когда хорды взаимно перпендикулярны, r = 1 2 A ¯ 2 + a ¯ 2 + B ¯ 2 + b ¯ 2 {displaystyle r={frac {1}{2}}{sqrt {{overline {A}}^{2}+{overline {a}}^{2}+{overline {B}}^{2}+{overline {b}}^{2}}}}

Связанные понятия

  • Касательная
  • Секущая
  • Диаметр
  • Дуга окружности

(голосов:0)

Пожожие новости
Комментарии

Ваше Имя:   

Ваш E-Mail: