Форум Статьи Контакты
Строительство — возведение зданий и сооружений, а также их капитальный и текущий ремонт, реконструкция, реставрация и реновация.

Десятиугольник

Дата: 10-11-2020, 05:27 » Раздел: Статьи  » 

Десятиугольник (правильный десятиугольник — декагон) — многоугольник с десятью углами и десятью сторонами.

Правильный десятиугольник

У правильного десятиугольника все стороны равной длины, и каждый внутренний угол составляет 144°.

Площадь правильного десятиугольника равна (t — длина стороны):

A = 5 2 t 2   c t g π 10 = 5 t 2 2 5 + 2 5 ≈ 7.694 t 2 . {displaystyle A={frac {5}{2}}t^{2} ctg{frac {pi }{10}}={frac {5t^{2}}{2}}{sqrt {5+2{sqrt {5}}}}approx 7.694t^{2}.}

Альтернативная формула A = 2.5 d t {displaystyle A=2.5dt} , где d - расстояние между параллельными сторонами или диаметр вписанной окружности. В тригонометрических функциях он выражается так:

d = 2 t ( cos ⁡ 3 π 10 + cos ⁡ π 10 ) , {displaystyle d=2tleft(cos { frac {3pi }{10}}+cos { frac {pi }{10}} ight),}

и может быть представлен в радикалах как

d = t 5 + 2 5 . {displaystyle d=t{sqrt {5+2{sqrt {5}}}}.}

Сторона правильного десятиугольника, вписанного в единичную окружность, равна 5 − 1 2 = 1 φ {displaystyle { frac {{sqrt {5}}-1}{2}}={ frac {1}{varphi }}} , где φ {displaystyle varphi } - золотое сечение.

Радиус описанной окружности десятиугольника равен

R = 5 + 1 2 t , {displaystyle R={frac {{sqrt {5}}+1}{2}}t,}

а радиус вписанной окружности

r = 5 + 2 5 2 t . {displaystyle r={frac {sqrt {5+2{sqrt {5}}}}{2}}t.}

Построение

По теореме Гаусса — Ванцеля правильный десятиугольник возможно построить, используя лишь циркуль и линейку. На диаграмме показано одно из таких построений. Иначе его можно построить следующим образом:

  • Построить сначала правильный пятиугольник.
  • Соединить все его вершины с центром описанной окружности прямыми до пересечения с этой же окружностью на противоположной стороне. В этих точках пересечения и находятся остальные пять вершин десятиугольника.
  • Соединить по порядку вершины пятиугольника и пять точек, найденные шагом ранее. Искомый десятиугольник построен.
  • Разбиение правильного десятиугольника

    Гарольдом Коксетером было доказано, что правильный 2 m {displaystyle 2m} -угольник (в общем случае - 2 m {displaystyle 2m} -угольный зоногон) можно разбить на m ( m − 1 ) 2 {displaystyle {frac {m(m-1)}{2}}} ромбов. Для декагона m = 5 {displaystyle m=5} , так что он может быть разбит на 10 ромбов.

    Пространственный десятиугольник

    Пространственный десятиугольник — это пространственный многоугольник с десятью рёбрами и вершинами, но не лежащими в одной плоскости. У пространственного зиг-заг десятиугольника вершины чередуются между двумя параллельными плоскостями.

    У правильного пространственного десятиугольника все рёбра равны. В трёхмерном пространстве это зиг-заг пространственный декагон, он может быть обнаружен среди рёбер и вершин пентагональной антипризмы, пентаграммной антипризмы, пентаграммной перекрещивающейся антипризмы с той же D5d [2+,10] симметрией порядка 20.

    Его также можно найти в некоторых выпуклых многогранниках с икосаэдрической симметрией. Многоугольники по периметру этих проекций (см. ниже) это пространственные десятиугольники.

    Многоугольники Петри

    Правильный пространственный десятиугольник — это многоугольник Петри для многих многогранников высших размерностей, как показано на этих ортогональных проекциях на различных плоскостях Коксетера.


    (голосов:0)

    Пожожие новости
    Комментарии

    Ваше Имя:   Ваш E-Mail: