Строение кости как органа

25.11.2014

Каждая кость — os — является очень сложным органом, снабжённым кровеносными сосудами и нервами. Он содержит внутри костный мозг, а снаружи одет своеобразной соединительнотканной оболочкой — надкостницей. У многих костей имеются и хрящевые дополнения, покрывающие главным образом сочленовные поверхности.
1. Надкостница — periosteum (рис. 17—b) — представляет розового цвета плотную соединительнотканную рубашку кости. В ней можно выделить поверхностный и глубокий слои.
Поверхностный слой надкостницы богат соединительнотканными волокнами, нервами и сосудами. Он особенно толст в местах прикрепления сухожилий и связок, ибо пучки последних частью переходят прямо в надкостницу, а частью проникают в толщу кости.
Глубокий (остеогенный) слой надкостницы нежнее поверхностного, беден сосудами, но обильно снабжён клеточными элементами; при этом у молодых животных, с растущей костью, самые глубокие округлые или кубические клетки лежат сплошным пластом непосредственно на поверхности костной ткани и носят название костеобразователей — osteoblaston. При росте кости они энергично размножаются, вырабатывают межклеточное вещество костной ткани и одна за другой превращаются в настоящие костные клетки вновь сформированных костных пластов. Таким путём (аппозиционно) кость растёт в толщину снаружи. Под старость остеобласты сохраняются в надкостнице уже не сплошным слоем, а отдельными участками. Таким образом, при повреждении костей костная ткань может восстанавливаться со стороны надкостницы. Помимо этой роли надкостница важна ещё и тем, что находящиеся в ней кровеносные сосуды обеспечивают обильный приток крови в толщу кости. Оголённая на значительном протяжении кость отмирает за отсутствием питательного материала. Богатство надкостницы нервными элементами придаёт ей высокую чувствительность.
Надкостница прочно удерживается на поверхности кости, во-первых, благодаря сосудам, направляющимся от неё в кость, и, во-вторых, тем, что часть пучочков соединительной ткани надкостницы во многих местах погружается в периферические слои кости и прочно здесь залегает, иногда пропитываясь солями извести. Такие пучочки волокон особенно обильны в местах закрепления сухожилий и связок, часть которых также проникает в кость.
2. Скульптура костей и обозначения на них. Производя осмотр костей скелета, нетрудно заметить, что очертания их не имеют правильных геометрических фигур — скульптура их очень разнообразна.
Для подробного знакомства с рельефом костей необходимо описать их поверхности — facies, —края — margines, —углы — anguli.
Правильность формы костей особенно сильно нарушается присутствием на их поверхностях различного рода возвышений и углублений.

Строение кости как органа

Возвышения на кости бывают разные и получают соответствующие названия: а) резко ограниченный, значительный выступ — отросток — processus; б) с широким основанием тупое возвышение — бугор — tuber, — а такое же, но маленькое возвышение — бугорок — tuberculum; в) значительно выраженное плоскостное возвышение с более или менее ровным свободным краем—ость—spina, — а с изрезанным, неровным краем—гребень—crista, pecten; г) ограниченное место поверхности со многими очень маленькими точечными возвышениями—шероховатость—tuberositas, — а если такие же возвышения тянутся по одной линии—линейная шероховатость, или просто линия — linea; л) шаровидный утолщённый конец кости, смотря по величине, получает название головки — caput, или capitulum; если под таким головчатым концом имеется суженный участок мости, то последний называют шейкой—collum; е) конец кости в виде поперёк лежащего цилиндра—блок—trochlea, — а в виде полуконуса с гребнем (или жолобом), идущим винтообразно по поверхности, — винтообразный блок—cochlea; если утолщённый конец разделён вырезкой на два возвышения, то эти возвышения называются мыщелками — condyli.
Углубления. Нарушения правильности кости в виде всевозможных углублений также имеют соответствующие названия: а) ямка—fossa, или fovea, foveola; б) плоское вдавление—impressio; в) полость—cavum, —пазуха—sinus, —пещера—antrum; г) жолоб, или борозда,—sulcus; д) вырезка по краю—excisura, или incisura; е) щель—fissura, —отверстие—foramen; ж) канал—canalis, —ход—ductus — и др.
3. Различие костей по форме. Если кость есть орган, а форма и строение органа — материальное, конкретное выражение присущей ему функции, то, казалось бы, легко связать форму и строение какой-либо кости с её значением, т. е. функцией. Ho функции даже у одного и того же типа кости, как мы указывали, не одинаковы: кость в одно и то же время может служить и рычагом движения, и опорой, и защитной стенкой; да и условия, в которые кости ставятся при работе, также разнообразны. В силу сказанного установить общие черты взаимоотношения между формой костей я различными оттенками их функций довольно трудно. Поэтому при рассмотрении формы следует сосредоточить внимание лишь на главной функции определённого типа костей, к которой уже нетрудно присоединить и побочное их значение.
Согласно этому, кости условно разбивают на ряд формовых типов, с которыми и связывают их основную функцию.
Таких формовых типов костей различают пять: 1) длинных трубчатых, 2) длинных дугообразных, 3) коротких, 4) плоских и 5) смешанных костей.
а) Длинные трубчатые кости—ossa longa—характеризуются тем, что одно измерение их (длина) значительно превалирует над двумя другими (шириной и толщиной), причём эти последние приблизительно одинаковы по величине, так что кость приближается по форме к цилиндру (рис. 18) с полостью в середине.
На длинных трубчатых костях различают среднюю часть — тело, или диафиз—diaphysis (B) — и два суставных конца, или эпифиза — epiphysis (А, С).
Трубчатые кости служат рычагами движения с высоким полезным действием; вместе с тем они отлично могут выполнять и опорную функцию. Местом нахождения таких цилиндрических стоек являются исключительно звенья конечностей. Длина кости выгодна здесь тем, что конечности должны обладать длинными рычагами, чтобы делать значительные размахи и, следовательно, развивать значительную быстроту при поступательных движениях. Толстый слой компактного вещества диафиза способен оказывать большое сопротивление силам сжатия и растяжения. Так как эти силы воздействуют на периферию цилиндрической кости, то диафиз имеет толстые наружные стенки, а внутри—костномозговую полость; тем самым кость выигрывает в лёгкости и в затрате материала.
Эпифизы длинных костей обычно несколько утолщены, благодаря чему увеличиваются их поверхности соприкосновения с соседними костными звеньями и в то же время возрастает угол между направлениями мускульной силы и самого рычага, на который действует сила, т. е. мускулы ставятся в более выгодные условия для своей работы.
Эпифизы внутри заключают губчатое вещество и тонкий пласт компактного костного вещества с периферии. В этих условиях концы кости при большом их объёме, разумеется, выигрывают в лёгкости, создавая одновременно в петлях губчатого вещества удобное вместилище для красного костного мозга.
Прочность построения в эпифизах достигается тем, что скреплённые перемычками балки губчатого вещества, как это будет описано дальше, распределяются по траекториям сжатия и растяжения, т. е. своим положением строго соответствуют законам механики.
б) Длинные дугообразные кости характеризуются своей длиной, изогнутой в виде полуобруча формой и отсутствием, в отличие от длинных трубчатых костей, костномозговой полости. Длинные дугообразные кости могут быть или лентообразными (пластинчатыми), как, например, рёбра крупного рогатого скота, или более приближающимися к цилиндрическим, как, например, рёбра собак. Они выполняют функцию рычагов движения, являясь в то же время опорой для стенок полостей тела.
в) Короткие кости — ossa brevia — представляют сравнительно небольшие угловатые или округлые костные образования, все три измерения которых приблизительно одинаковы.
Они состоят из наружного тонкого слоя компактного вещества, а внутри заполнены костным губчатым веществом, т. е. подходят по строению к эпифизам длинных костей. Короткие кости играют одновременно роль рычагов движения и опорных участков; кроме того, они увеличивают рессорность отдельных участков скелета.
Располагаются они или группами между эпифизами соседних длинных костей, в местах, где требуется умерить давление тяжести тела (путём распределения этого давления на обширную площадь наклонных плоскостей соприкосновения коротких костей одна с другой, например в запястье и заплюсне) и вместе с тем увеличить размах движения и прочность сочленения, или же цепочкой, как, например, тела позвонков. И здесь в окончательном итоге достигается большая подвижность позвоночного столба при значительной прочности соединения отдельных позвонков и сильное ослабление толчков, передаваемых голове при движении животного (рессорная функция).
В отдельных местах организма кости этого типа, так называемые сезамовидные кости, вправлены в сухожилия мускулов, перебрасывающихся через вершины углов. Тем самым уменьшается параллелизм между направлением силы мускула и плечом рычага, на который он действует, т. е. мускул получает возможность работать в более выгодных условиях, а кость функционирует как блок.
Для соединения с соседними костями, а также для прикрепления мускулов (или связок) на коротких костях могут развиваться мощные отростки, как, например, на пяточной кости, на телах позвонков. На последних формируются даже костные дужки для защиты спинного мозга.
г) Плоские кости — ossa plana, — как показывает и само название, распространены своей массой по плоскости, т. е. два измерения их (длина и ширина) превалируют над третьим (толщиной). Они построены из двух компактных пластинок, между которыми остаётся тонкая прослойка губчатого вещества—diploe. Иногда пластинки так плотно сливаются одна с другой, что губчатое вещество отсутствует, а иногда они настолько значительно разъединяются, что образуют довольно обширные пазухи, или синусы, выстланные слизистой оболочкой и наполненные воздухом.
Главное назначение плоских костей — служить стенками полостей для защиты помещённых в них органов. Имеются полости, почти со всех сторон окружённые плоскими костями, как, например, полость черепа, причём кости прочно соединяются между собой швами, которые в большинстве случаев окостеневают; здесь плоские кости особенно рельефно выражены по форме.
В виде исключения плоская кость может и не участвовать в образовании полости, а служить исключительно в качестве широкого поля для закрепления мускулов, как, например, лопатка плечевого пояса.
д) Сметанные кости — ossa mixta — представляют кости, которые не укладываются в какой-либо из упомянутых типов. В их составе находят части, построенные и по типу плоских и по типу коротких костей. К их числу можно отнести височную кость с приросшей к ней скалистой костью у некоторых животных), затылочную и клиновидную кости некоторых животных.
Существует ещё один, важный при изучении признак, по которому можно определить место кости в костном сегменте. В сегментальных плоскостях осевого скелета можно легко выделить кости парные и непарные.
Непарные кости можно распилить или мысленно разделить на две совершенно одинаковые половины (позвонок, затылочную кость, клиновидную кость и др.). Такие кости всегда лежат в сегменте по средней вагиттальной плоскости скелета; эта плоскость рассекает их на симметричные правую и левую половины.
Парные кости нельзя распилить на симметричные половины ни по каким направлениям (кости конечностей, рёбра, слёзная кость, носовые и др.). Они лежат в сегментах по бокам, большей частью на некотором расстоянии одна от другой. Однако отдельные соимённые костные пары могут соприкасаться своими краями по средней сагиттальной линии.
4. Архитектура костей. Каждая кость имеет по периферии очень плотную, жестами тонкую, местами, наоборот, очень толстую стенку. Эта стенка состоит из так называемого компактного костного вещества (рис. 18—4). Внутрь от компактного вещества кость построена из ряда тонких, соединённых со стенкой и между собой костных перекладинок, которые в общей сложности напоминают мелкопетлистую губку, вследствие чего такая структура и называется губчатым костным веществом (5).
Костные перекладинки, или трабекулы, распределены в губчатом веществе по траекториям сжатия и растяжения; таким образом, они реагируют на испытываемые костью сжатие, растяжение и кручение, строго следуя законам механики. В то же время при такой конструкции имеется выигрыш в лёгкости без проигрыша в прочности. Каждая перекладинка имеет своё специальное значение, а при длительном изменении условий, в которых находилась кость, перестраивается её внутренняя архитектура: все ненужные балки уничтожаются клетками-костеразрушителями, а другие клетки—костеобразователи — формируют новые системы балок, отвечающие изменённым условиям.
Кроме того, кость имеет ряд полостей. Одни из них очень обширны, как, например, в среднем участке трубчатых костей у взрослых животных (3) и в некоторых плоских костях; другие, наоборот, очень мелки и многочисленны, как это имеет место в губчатом веществе концевых участков трубчатых костей (5) или коротких и плоских костей. У млекопитающих все костные полости заполнены костным мозгом; лишь некоторые плоские кости скелета головы выстланы эпителием и содержат воздух (пазухи). У птиц таких воздухоносных костей — ossa pneumatica — очень много.
Крепость костей приближается к крепости чугуна, а упругость стоит выше упругости дубового дерева. У молодых животных они более упруги, так как содержат меньше «костной земли», чем у старых животных. В силу этого у очень старых животных кости становятся более ломкими.
Цвет свежих костей — беловатый с желтовато-розовым оттенком; хорошо мацерированные и высушенные на солнце препараты костей выглядят светлопалевыми.
5. Костный мозг выполняет костномозговые полости. Он представляет очень нежное и обильно пронизанное широкими кровеносными капиллярами образование красного цвета; его остовом служит широкопетлистая ретикулярная ткань. В петлях этой сети располагается масса необычайно разнообразных клеточных элементов: сформированные красные кровяные клетки — эритроциты, зернистые лейкоциты, малые и большие лимфоциты, родоначальники перечисленных клеток и их поколения, постепенно превращающиеся в зрелые формы эритроцитов и зернистых лейкоцитов. Словом, в красном костном мозге костных полостей происходит процесс кроветворения. Кроме того, здесь расположены большие одноядерные клетки — мегакариоциты и жировые к летки; если последние преобладают, костный мозг приобретает желтоватый оттенок — жёлтый костный мозг, являющийся, следовательно, запасом питательных веществ. Наконец, здесь же ближе к костной ткани лежат костеобразователи —остеобласты, значение которых то же, что и в надкостнице, и костеразрушители — остеокласты. Это очень крупные многоядерные клетки; они выполняют работу разрушения, выражающуюся в рассасывании и уничтожении костной ткани. Такая, странная на первый взгляд, функция имеет, однако, чрезвычайно важное значение. Благодаря диаметрально противоположной работе костеразрушителей и костеобразователей существует возможность до старости перестраивать архитектуру кости, соответственно изменяющимся механическим условиям сжатия, растяжения и кручения.
6. Структура костей. В состав костной ткани входят: а) костные клетки и б) межклеточная субстанция, в которой различают основное бесструктурное вещество и оформленную часть в виде волокон.
По истории развития костные клетки представляют самые поздние и специально видоизменённые генерации среди родоначальников других видов опорной ткани. Особенности их функции вызвали значительное изменение межклеточной субстанции, основное бесструктурное вещество которой ярко характеризует костную ткань.
Строение кости как органа

Межклеточная субстанция построена сложно. Её основное бесструктурное вещество состоит из слизеподобного (оссеомукоид) и белковоподобного (оссеоальбумоид) органических соединений, вступивших в тесную связь с минеральной субстанцией. Последняя получила название «костной земли». В её состав входят соли извести, главным образом фосфорнокислой.
Волокнистая часть представлена обыкновенными клейдающими (коллагенными) волокнами. Они идут в костной ткани тонкими пучками в определённом, более или менее строгом порядке, следуя закономерностям расположения костных клеток, и формируют изогнутые пластинки и трубки, дающие возможность обозначить их названием костных пластинок. Волокнистое вещество ткани вместе с оссеомукоидом и оссеоальбумоидом представляют органическую основу кости — оссеин, или костный хрящ.
Оссеин пропитан сплошь солями извести, т. е. неорганической составил частью, причём наличие последней служит исключительным признаком постной ткани и придаёт ей необходимую твёрдость.
Костные пластинки имеют форму трубок неодинакового диаметра, как бы вложенных одна в другую и размещающихся вокруг каждого сосудистого канала в количестве от 4 до 24. Система таких пластинок вместе с центральным сосудистым каналом называется остеоном (С). Густота расположения остеонов зависит от местоположения кости в скелете и от падающей на неё физической нагрузки (Н. Ф. Богдашев).
Направление хода пучочков волокнистого вещества в разных пластинках остеона не одинаково: в одних пластинках пучочки идут приблизительно циркулярно по отношению к каналу, а в соседних, наоборот, более продольно, в следующих — опять циркулярно и т. д. В общем же коллагенные волокна одной пластинки лежат перпендикулярно к волокнам, другой и тем самым создают прочные волокнистые скрепы кости, В самых наружных пластинках остеона такой правильности хода волокон уже не наблюдается. Между остеомами лежат ещё системы промежуточных пластинок. В период развития они также были круговыми системами, цикл формирования которых был прерван впоследствии вновь развившимися остеонами; в силу этого они производят впечатление обрезков круга и самостоятельных сосудистых каналов уже не имеют.
Строение кости как органа

Наконец, под надкостницей, т. е. снаружи стенки кости, и у костномозговой полости, т. е. у внутренней поверхности кости, находятся самостоятельные системы кругов костных пластинок, охватывающих трубчатую кость полным кольцом. Первые из них сильно развиты и получают название наружных общих, а вторые — внутренних общих, или генеральных, костных пластинок (а, b).
В компактном веществе плоских костей сосудистые каналы обычно расходятся лучами во все стороны от какого-либо определённого места, а в компактном веществе коротких костей проходят в различных направлениях без какой-либо закономерности.
Губчатое вещество кости состоит из различного диаметра костных перекладин; лишь наиболее толстые из них имеют свои остеоны, а в тонких костные пластинки расположены параллельно поверхности перекладин.
7. Развитие костей. В ранний период онтогенеза скелет представлен молодой соединительной тканью — мезенхимой, которая в скелете туловища и конечностей, а отчасти и черепа затем замещается хрящевой тканью. Костеобразовательный процесс начинается с того,что в определённых участках мезенхимного или хрящевого скелета появляются остеобласты, которые вырабатывают костное вещество и образуют очаги окостенения. Одни кости развиваются непосредственно в мезенхиме и называются поэтому первичными, или покровными. По такому способу окостеневают многие кости мозгового и почти все кости лицевого черепа, а также дистальные участки концевых фаланг пальцев. Очаги окостенения в первичных костях состоят из костных перекладин, формирующих губчатое вещество. Впоследствии оно замыкается с поверхности слоем компактного вещества.
Однако большинство костей скелета возникает путём замещения хряща. Такие кости называются поэтому вторичными, или замещающими. В зависимости от места образования костной ткани различают внутрихрящевое, или энхондральное, окостенение и перихондральное окостенение, при котором костная ткань появляется на поверхности хряща. В длинных костях окостенение начинается в средней части диафиза. Здесь под надхрящницей (будущей надкостницей) появляются остеобласты, вырабатывающие костную ткань, которая в виде ободка (манжетки) охватывает диафиз (рис. 20—1, а). Отсюда остеобласты вместе с кровеносными сосудами внедряются в глубину хряща, где и начинается энхондральное окостенение, приводящее к образованию губчатого вещества (6). Так закладывается диафизарный очаг окостенения.
В дальнейшем на поверхности диафиза откладываются всё новые и новые наслоения периостальной кости. На поперечном распиле диафиза такие слои напоминают годичные кольца дерева (рис. 21). Таким путём обеспечивается рост кости в толщину. По мере того как весь хрящ в области диафиза замещается костной тканью и с поверхности продолжают наращиваться новые слои кости, внутри в средней трети диафиза начинается разрушение и рассасывание (резорбция) губчатого вещества энхондральной кости, на месте которого возникает полость, заполненная костным мозгом (рис, 20—5, 6, 7—с). Наличие костномозговой полости во многих длинных костях и послужило поводом называть их трубчатыми.
Строение кости как органа

Суставные концы длинных костей вначале состоят из хряща. Очаги окостенения (h) в них появляются значительно позднее, чем в диафизах. Они называются эпифизами. Окостенение эпифизами совершается по энхондральному типу. Эпифизы состоят из губчатого вещества, одетого лишь с поверхности тонким слоем компактного вещества. Замещая хрящ, эпифизарный очаг окостенения сближается с костным концом диафиза — метафизом; но прослойка хряща, отделяющая эпифиз от метафиза (метаэпифизарный хрящ) (6, е), несмотря на постоянное разрушение и замещение вновь образующейся костной тканью со стороны метафиза, сохраняется (благодаря усиленному размножению хрящевых клеток) в течение длитeльнoгo срока. Этим обеспечивается рост кости в длину. Однако размножение хрящевых клеток в метаэпифизарной зоне со временем замедляется и, наконец, прекращается полностью, и тогдa вся зона окончательно заменяется костной тканью. Эпифиз при этом срастается с диафизом, возникает синостоз, и продольный рост кости становится невозможным, Появление синостозов указывает на наступление физической зрелости животного.
Многие отростки костей, служащие местом прикрепления связок и мышц,, также развиваются за счёт особых энхондральных очагов окостенения. Такие очаги называются апофизами.
В коротких костях окостенение также начинается по энхондральному типу, к которому лишь впоследствии присоединяется перихондральное окостенение. За счёт последнего поверхность коротких костей покрывается тонким замыкающим слоем компактного вещества (Г. Г. Воккен).
В течение жизни животного каждая кость, благодаря деятельности упомянутых выше костеразрущителей и костеобразователей, обладает возможностью перестраиваться по законам механики, отвечая на изменяющиеся условия сжатия и растяжения.
Таким образом, даже на одной и той же кости можно установить различия в её величине (в период роста), различия внутренней структуры, различия в мелких деталях наружного рельефа (отростки, бугорки, желоба и пр.); более или менее сохраняется лишь общий план строения кости.


Добавить комментарий
Имя:*
E-Mail:
Комментарий: